Skip to content

Agentic AI Framework - Examples

This document contains runnable examples for various features of the agenticaiframework package.
Each example is aligned with the actual API and uses the agenticaiframework namespace for imports.


1. Agents Example

from agenticaiframework.agents import AgentManager, Agent

if __name__ == "__main__":
    agent_manager = AgentManager()

    example_agent = Agent(name="ExampleAgent")
    agent_manager.register_agent(example_agent)

    example_agent.start()
    example_agent.pause()
    example_agent.resume()
    example_agent.stop()

    print("Registered Agents:", [agent.name for agent in agent_manager.agents])
    retrieved_agent = agent_manager.get_agent("ExampleAgent")
    print("Retrieved Agent:", retrieved_agent.name)

2. Tasks Example

from agenticaiframework.tasks import TaskManager, Task

if __name__ == "__main__":
    task_manager = TaskManager()

    class AdditionTask(Task):
        def run(self, a, b):
            result = a + b
            print(f"Task Result: {result}")
            return result

    addition_task = AdditionTask(name="AdditionTask")
    task_manager.register_task(addition_task)

    addition_task.run(5, 7)
    print("Registered Tasks:", [task.name for task in task_manager.tasks])
    retrieved_task = task_manager.get_task("AdditionTask")
    print("Retrieved Task:", retrieved_task.name)

3. LLMs Example

from agenticaiframework.llms import LLMManager

if __name__ == "__main__":
    llm_manager = LLMManager()

    llm_manager.register_model("demo-llm", lambda prompt: f"[Demo LLM Response to: {prompt}]")
    llm_manager.set_active_model("demo-llm")

    print("Generated Text:", llm_manager.generate("Explain the concept of machine learning in simple terms."))
    print("Available Models:", list(llm_manager.models.keys()))

4. Guardrails Example

from agenticaiframework.guardrails import GuardrailManager

if __name__ == "__main__":
    guardrail_manager = GuardrailManager()

    guardrail_manager.add_guardrail("No profanity", lambda text: "badword" not in text)
    print("Compliant Output Valid:", guardrail_manager.validate("This is clean text."))
    print("Non-Compliant Output Valid:", guardrail_manager.validate("This contains badword."))

5. Memory Example

from agenticaiframework.memory import MemoryManager

if __name__ == "__main__":
    memory = MemoryManager()

    memory.store_short_term("user_name", "Alice")
    memory.store_short_term("last_query", "What is the capital of France?")

    print("Retrieved User Name:", memory.retrieve("user_name"))
    print("Retrieved Last Query:", memory.retrieve("last_query"))

    keys = list(memory.short_term.keys()) + list(memory.long_term.keys()) + list(memory.external.keys())
    print("Stored Keys:", keys)

    memory.clear_short_term()
    memory.clear_long_term()
    memory.clear_external()
    print("Memory cleared. Keys now:", list(memory.short_term.keys()) + list(memory.long_term.keys()) + list(memory.external.keys()))

6. MCP Tools Example

from agenticaiframework.mcp_tools import MCPToolManager, MCPTool

def greet_tool(name: str) -> str:
    return f"Hello, {name}! Welcome to MCP Tools."

if __name__ == "__main__":
    mcp_manager = MCPToolManager()

    greet_mcp_tool = MCPTool(name="greet", capability="greeting", execute_fn=greet_tool)
    mcp_manager.register_tool(greet_mcp_tool)

    print("Available Tools:", [tool.name for tool in mcp_manager.tools])
    result = mcp_manager.execute_tool("greet", "Alice")
    print("Tool Execution Result:", result)

7. Monitoring Example

from agenticaiframework.monitoring import MonitoringSystem

if __name__ == "__main__":
    monitor = MonitoringSystem()

    monitor.log_event("AgentStarted", {"agent_name": "ExampleAgent"})
    monitor.log_event("TaskCompleted", {"task_name": "AdditionTask", "status": "success"})

    monitor.record_metric("ResponseTime", 1.23)
    monitor.record_metric("Accuracy", 0.98)

    print("Logged Events:", monitor.events)
    print("Logged Metrics:", monitor.metrics)

8. Prompts Example

from agenticaiframework.prompts import Prompt

if __name__ == "__main__":
    prompt_instance = Prompt(
        template="Write a {length} paragraph summary about {topic}."
    )

    rendered_prompt = prompt_instance.render(length="short", topic="artificial intelligence")
    print("Rendered Prompt:", rendered_prompt)

9. Configurations Example

from agenticaiframework.configurations import ConfigManager

if __name__ == "__main__":
    config = ConfigManager()
    config.set("api_key", "123456")
    print("API Key:", config.get("api_key"))

Usage:
Run any example with: ```bash python examples/.py