Skip to content



11. Advanced Usage Patterns

Multi-Agent Collaboration

You can orchestrate multiple agents to work together on complex tasks.

from agenticaiframework import Agent, AgentManager

agent1 = Agent(name="Researcher", role="research", capabilities=["text"])
agent2 = Agent(name="Summarizer", role="summarize", capabilities=["text"])

manager = AgentManager()
manager.register_agent(agent1)
manager.register_agent(agent2)

research_result = agent1.act("Find the latest AI research papers on reinforcement learning.")
summary = agent2.act(f"Summarize this: {research_result}")
print(summary)

Asynchronous Processing

For I/O-bound tasks, use asynchronous processes to improve performance.

import asyncio
from agenticaiframework.processes import run_process_async

async def async_task():
    return "Completed async task"

result = asyncio.run(run_process_async(async_task))
print(result)

Integrating External APIs

Agents can call external APIs as part of their workflow.

import requests
from agenticaiframework.agents import Agent

class WeatherAgent(Agent):
    def act(self, location):
        response = requests.get(f"https://api.weatherapi.com/v1/current.json?q={location}&key=YOUR_KEY")
        return response.json()

weather_agent = WeatherAgent(name="WeatherBot", role="weather", capabilities=["data"])
print(weather_agent.act("New York"))

12. Deployment Scenarios

Local Development

  • Install dependencies with pip install -e .[dev]
  • Run tests locally before deployment.

Docker Deployment

Create a Dockerfile:

FROM python:3.10
WORKDIR /app
COPY . .
RUN pip install .
CMD ["python", "main.py"]

Cloud Deployment

Deploy to AWS Lambda, Google Cloud Functions, or Azure Functions by packaging the code and dependencies.


13. Security Considerations

  • Always validate and sanitize inputs to agents.
  • Use guardrails to prevent unsafe actions.
  • Store API keys securely using environment variables or secret managers.
  • Limit network access for agents running in untrusted environments.

14. Performance Optimization

  • Use caching for repeated computations.
  • Optimize prompt templates for LLMs to reduce token usage.
  • Use batch processing for large datasets.
  • Profile and monitor agent performance using monitoring.py.

15. Troubleshooting Complex Workflows

  • Enable debug logging: set_config("log_level", "DEBUG")
  • Break down workflows into smaller steps for easier debugging.
  • Use pytest -v for verbose test output.

16. Contributing to AgenticAI

We welcome contributions!
1. Fork the repository.
2. Create a feature branch.
3. Implement your changes with tests.
4. Submit a pull request.


17. Additional Resources

Using AgenticAI

This guide explains how to install, configure, and use the AgenticAI package with practical examples.


1. Installation

Install AgenticAI from PyPI:

pip install agenticaiframework

Or install from source:

git clone https://github.com/isathish/AgenticAI.git
cd AgenticAI
pip install .

2. Basic Usage

Creating and Running an Agent

from agenticaiframework.agents import Agent
from agenticaiframework.hub import register_agent, get_agent

class EchoAgent(Agent):
    def act(self, input_data):
        return f"Echo: {input_data}"

register_agent("echo", EchoAgent)

agent = get_agent("echo")
print(agent.act("Hello World"))

3. Using Built-in Agents

AgenticAI comes with prebuilt agents. You can load them via the hub:

from agenticaiframework.hub import get_agent

agent = get_agent("default_agent")
response = agent.act("Summarize this text.")
print(response)

4. Configuring the System

Edit configurations.py or pass configuration at runtime:

from agenticaiframework.configurations import set_config

set_config("llm_provider", "openai")
set_config("api_key", "your_api_key_here")

5. Using Tools

from agenticaiframework.hub import get_tool

sentiment_tool = get_tool("sentiment_analysis")
result = sentiment_tool("I love this product!")
print(result)

6. Running Processes

from agenticaiframework.processes import run_process

result = run_process("data_analysis", {"dataset": "data.csv"})
print(result)

7. Memory Usage

from agenticaiframework.memory import Memory

mem = Memory()
mem.store("user_name", "Alice")
print(mem.retrieve("user_name"))

8. Example Workflow

from agenticaiframework.hub import get_agent, get_tool

agent = get_agent("default_agent")
tool = get_tool("sentiment_analysis")

text = "The movie was fantastic!"
analysis = tool(text)
response = agent.act(f"Summarize the sentiment: {analysis}")
print(response)

9. Testing

Run tests with:

pytest

10. Additional Resources