Prompt Rendering Example¶
This guide provides a professional, step-by-step walkthrough for using the Prompt
class in the agenticaiframework
package to create and render dynamic text templates.
It is intended for developers building AI-driven applications that require flexible, parameterized prompt generation.
Prerequisites & Configuration¶
- Installation: Ensure
agenticaiframework
is installed and accessible in your Python environment. - No additional configuration is required for this example.
- Python Version: Compatible with Python 3.8+.
Code¶
from agenticaiframework.prompts import Prompt
if __name__ == "__main__":
# Create a prompt template
prompt_instance = Prompt(
template="Write a {length} paragraph summary about {topic}."
)
# Render the prompt with variables
rendered_prompt = prompt_instance.render(length="short", topic="artificial intelligence")
print("Rendered Prompt:", rendered_prompt)
Step-by-Step Execution¶
-
Import the Class
ImportPrompt
fromagenticaiframework.prompts
. -
Create a Prompt Template
Instantiate thePrompt
class with a template string containing placeholders in{}
format. -
Render the Prompt
Callrender
with keyword arguments matching the placeholders in the template. -
Output the Result
Print or log the rendered prompt for use in downstream AI model calls.
Best Practice: Keep prompt templates clear and concise, and use descriptive placeholder names to improve maintainability.
Expected Input¶
No user input is required; the script uses hardcoded values for demonstration purposes. In production, placeholder values could be dynamically generated from user input, database queries, or API responses.
Expected Output¶
Rendered Prompt: Write a short paragraph summary about artificial intelligence.
How to Run¶
Run the example from the project root:
python examples/prompts_example.py
If installed as a package, you can also run it from anywhere:
python -m examples.prompts_example
Tip: Store frequently used prompt templates in a configuration file or database for easy reuse and updates.