Skip to content

AgenticAI Framework — Memory Module Documentation

Overview

The memory module provides mechanisms for agents to store, retrieve, and manage information across their lifecycle. It supports both short-term and long-term memory, enabling context-aware and stateful agent behavior.


Key Class

Memory

Location: agenticaiframework/memory.py

The Memory class is a simple key-value store for agent data.

Core Methods: - store(key, value) — Store a value under a given key. - retrieve(key) — Retrieve a value by key. - clear() — Clear all stored data.


Example Usage

from agenticaiframework.memory import Memory

memory = Memory()
memory.store("user_name", "Alice")
print(memory.retrieve("user_name"))  # Output: Alice
memory.clear()

Use Cases

  • Session Management — Store user session data for conversational agents.
  • Context Retention — Maintain context between multiple agent actions.
  • Caching — Store frequently accessed data to improve performance.

Extending Memory

You can implement custom memory backends by creating a new class in memory.py:

class PersistentMemory:
    def __init__(self, storage_path):
        self.storage_path = storage_path
        self.data = {}

    def store(self, key, value):
        self.data[key] = value
        self._save()

    def retrieve(self, key):
        return self.data.get(key)

    def clear(self):
        self.data.clear()
        self._save()

    def _save(self):
        with open(self.storage_path, "w") as f:
            f.write(str(self.data))

Best Practices

  • Use in-memory storage for short-lived agents.
  • Use persistent storage for long-running agents or when data must survive restarts.
  • Avoid storing sensitive data unless encrypted.