📝 Basic Usage Example¶
This guide demonstrates a simple workflow using EmbeddingFramework.
1️⃣ Install the package¶
pip install embeddingframework
2️⃣ Import required modules¶
from embeddingframework.adapters.openai_embedding_adapter import OpenAIEmbeddingAdapter
from embeddingframework.adapters.vector_dbs import ChromaDBAdapter
3️⃣ Initialize components¶
embedding_provider = OpenAIEmbeddingAdapter(api_key="YOUR_OPENAI_API_KEY")
vector_db = ChromaDBAdapter(persist_directory="./chroma_store")
4️⃣ Generate embeddings¶
texts = ["Hello world", "EmbeddingFramework is awesome!"]
embeddings = embedding_provider.embed_texts(texts)
5️⃣ Store embeddings¶
vector_db.add_texts(texts, embeddings)
📊 Example Output¶
Input:
texts = ["Hello world", "EmbeddingFramework is awesome!"]
Output (example embeddings):
[
[0.0123, -0.2345, 0.9876, ...],
[-0.5432, 0.1234, 0.4567, ...]
]
🧩 Additional Examples¶
Example 1: Using a Different Vector DB¶
from embeddingframework.adapters.vector_dbs import WeaviateAdapter
vector_db = WeaviateAdapter(url="http://localhost:8080")
vector_db.add_texts(["Sample text"], [[0.1, 0.2, 0.3]])
Example 2: Storing Metadata¶
vector_db.add_texts(
["Document 1", "Document 2"],
embeddings,
metadatas=[{"source": "file1.txt"}, {"source": "file2.txt"}]
)
Example 3: Querying the Database¶
results = vector_db.query("Hello", top_k=2)
print(results)
✅ Summary¶
You have successfully: - Initialized an embedding provider - Generated embeddings - Stored them in a vector database - Queried the database - Stored metadata alongside embeddings