Skip to content

Quick Start

This guide will walk you through a basic usage example of EmbeddingFramework, from installation to storing and querying embeddings.


1️⃣ Install the Framework

If you haven't already, install EmbeddingFramework:

pip install embeddingframework

2️⃣ Initialize an Embedding Provider

Embedding providers generate vector representations of text.
For example, using OpenAI:

from embeddingframework.adapters.openai_embedding_adapter import OpenAIEmbeddingAdapter

embedding_provider = OpenAIEmbeddingAdapter(api_key="YOUR_OPENAI_API_KEY")

3️⃣ Initialize a Vector Database

Choose a vector database adapter.
For example, using ChromaDB:

from embeddingframework.adapters.vector_dbs import ChromaDBAdapter

vector_db = ChromaDBAdapter(persist_directory="./chroma_store")

4️⃣ Generate and Store Embeddings

texts = ["Hello world", "EmbeddingFramework is awesome!"]
embeddings = embedding_provider.embed_texts(texts)
vector_db.add_texts(texts, embeddings)

5️⃣ Query the Vector Database

results = vector_db.query("awesome framework", top_k=1)
print(results)

✅ Summary

In just a few lines of code, you: 1. Initialized an embedding provider. 2. Initialized a vector database. 3. Generated embeddings. 4. Stored them in the database. 5. Queried for similar results.


📚 Next Steps

  • Explore Features for more capabilities.
  • Check Examples for advanced use cases.